Hybrid Method with Parallel-Factor Theory, a Support Vector Machine, and Particle Filter Optimization for Intelligent Machinery Failure Identification

نویسندگان

چکیده

Here, a novel hybrid method of intelligent fault identification within complex mechanical systems was proposed using parallel-factor (PARAFAC) theory and adaptive particle swarm optimization (APSO) for support vector machine (SVM). The multi-scale analysis studied to reconstruct tensor feature information based on three-dimensional matrix time, frequency, spatial vectors. A wavelet used transform the original multi-channel experimental data acquired from gearbox into multi-level structure. optimal correspondence among two-dimensional signals in frequency time domains different modes established by PARAFAC theory. An APSO algorithm developed obtain parameter structures an SVM classifier. comparison with existing time–frequency showed that PARAFAC-PSO-SVM diagnosis model effectively eliminated redundant multi-dimensional features but retained important components. PARAFAC-APSO-SVM diagnostic achieved fast, accurate, simple fault-classification results, could provide theoretical application diagnosis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A HYBRID SUPPORT VECTOR REGRESSION WITH ANT COLONY OPTIMIZATION ALGORITHM IN ESTIMATION OF SAFETY FACTOR FOR CIRCULAR FAILURE SLOPE

Slope stability is one of the most complex and essential issues for civil and geotechnical engineers, mainly due to life and high economical losses resulting from these failures. In this paper, a new approach is presented for estimating the Safety Factor (SF) for circular failure slope using hybrid support vector regression (SVR) and Ant Colony Optimization (ACO). The ACO is combined with the S...

متن کامل

PREDICTION OF SLOPE STABILITY STATE FOR CIRCULAR FAILURE: A HYBRID SUPPORT VECTOR MACHINE WITH HARMONY SEARCH ALGORITHM

The slope stability analysis is routinely performed by engineers to estimate the stability of river training works, road embankments, embankment dams, excavations and retaining walls. This paper presents a new approach to build a model for the prediction of slope stability state. The support vector machine (SVM) is a new machine learning method based on statistical learning theory, which can so...

متن کامل

APPLICATION OF THE HYBRID HARMONY SEARCH WITH SUPPORT VECTOR MACHINE FOR IDENTIFICATION AND CALSSIFICATION OF DAMAGED ZONE AROUND UNDERGROUND SPACES

An excavation damage zone (EDZ) can be defined as a rock zone where the rock properties and conditions have been changed due to the processes related to an excavation. This zone affects the behavior of rock mass surrounding the construction that reduces the stability and safety factor and increase probability of failure of the structure. This paper presents an approach to build a model for the ...

متن کامل

PREDICTION OF EARTHQUAKE INDUCED DISPLACEMENTS OF SLOPES USING HYBRID SUPPORT VECTOR REGRESSION WITH PARTICLE SWARM OPTIMIZATION

Displacements induced by earthquake can be very large and result in severe damage to earth and earth supported structures including embankment dams, road embankments, excavations and retaining walls. It is important, therefore, to be able to predict such displacements. In this paper, a new approach to prediction of earthquake induced displacements of slopes (EIDS) using hybrid support vector re...

متن کامل

A Hybrid Model for Business Failure Prediction – Utilization of Particle Swarm Optimization and Support Vector Machines

Bankruptcy has long been an important topic in finance and accounting research. Recent headline bankruptcies have included Enron, Fannie Mae, Freddie Mac, Washington Mutual, Merrill Lynch, and Lehman Brothers. These bankruptcies and their financial fallout have become a serious public concern due to huge influence these companies play in the real economy. Many researchers began investigating ba...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Machines

سال: 2023

ISSN: ['2075-1702']

DOI: https://doi.org/10.3390/machines11080837